DKN-01 and Tislelizumab as a Second-line (2L) Investigational Therapy in Advanced DKK1-high Gastroesophageal Adenocarcinoma (GEA): DisTinGuish Trial

Samuel J. Klempner^a, Jaffer A. Ajani^b, Joseph Chao^c, Hope Uronis^d, Cynthia A. Sirard^e, Michael Kagey^e, Jason Baum^e, Lilin Zhang^f, In-Ho Kim^g, Do-Youn Oh^h, Byoung Yong Shimⁱ, Sun Jin Sym^j; Mohamad Sonbol^k, Mohamedtaki A. Tejani^l, Zev Wainberg^m, Devalingam Mahalingamⁿ, Keun-Wook Lee^o

aMassachusetts General Hospital Cancer Center, Boston, MA; bMD Anderson Cancer Center, Houston, TX; City of Hope Comprehensive Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eLeap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; and Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Center, Durham, NC, eleap Therapeutics, Cambridge, MA; bospital, Cancer Research Institute, Seoul National University Medical Ce The Catholic University of Korea St. Vincent's Hospital, Phoenix, AZ; AdventHealth Cancer Institute, Orlando, FL; "University Gil Medical Center, Incheon, South Korea; Gachon University of California Los Angeles, Los Angeles, CA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Gil Medical Center, Northwestern University, Chicago, IL; Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

BACKGROUND

Advanced GEA Treatment Landscape

- Anti-PD-1 antibodies + chemotherapy have recently been approved as first-line therapy in HER2(-) advanced GEA.¹ However, benefit remains modest and largely limited to PD-L1(+) patients, primarily those with combined positive score (CPS) ≥5.
- Current second line (2L) standard of care includes cytotoxic chemotherapy (e.g., taxane) +/- combination with ramucirumab
- KEYNOTE-061, which compared pembrolizumab to paclitaxel as a 2L therapy, failed to demonstrate improvement in progression-free survival (median PFS: pembrolizumab 1.5 months vs paclitaxel 4.1 months) or overall survival (median OS: pembrolizumab 9.1 months vs paclitaxel 8.3 months) in patients with CPS ≥ 1.2
- Post hoc analysis with CPS ≥ 10 revealed an ORR 24.5% for pembrolizumab vs 9.1% for paclitaxel; median OS: 10.4 months for pembrolizumab vs 8.0 months for paclitaxel.²
- Patients with CPS <1 had ORR 2% for pembrolizumab vs 10.4% for paclitaxel; median OS: 4.8 months for</p> pembrolizumab vs 8.2 months for paclitaxel.²

DKN-01 + Tislelizumab

- DKN-01 is a targeted anti-DKK1 mAb that has demonstrated improved clinical outcomes in patients with elevated tumoral DKK1³—a subset of patients with more aggressive disease and shorter overall survival.⁴
- Tislelizumab is an anti-PD-1 mAb with high affinity and specificity for PD-1, designed to minimize binding to FcγR on macrophages and thereby potentially avoid antibody-dependent phagocytosis.⁵

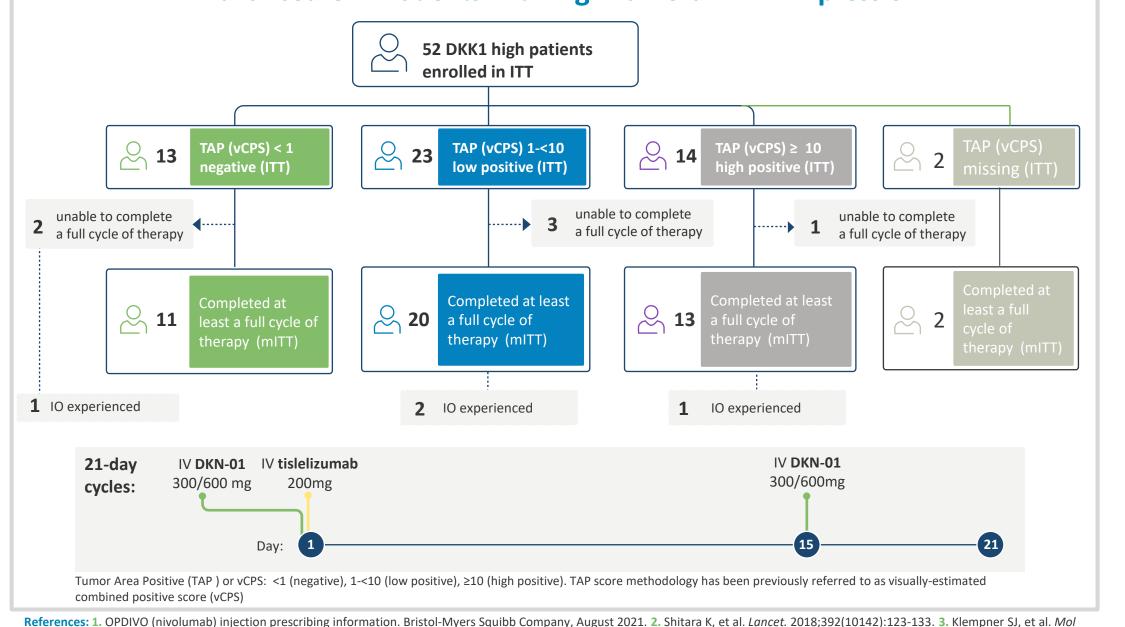
METHODS

DisTinGuish Trial (NCT04363801)

Design: Phase 2a, single arm, 2-part trial

- Part A: First-line DKN-01 300 mg + Tislelizumab + CAPOX in Advanced GEA (reported separately)
- Part B: Second-line DKN-01 300 or 600 mg + Tislelizumab in Advanced GEA with High Tumoral DKK1 Expression

Primary objective: safety and tolerability


Secondary efficacy endpoints: objective response rate (ORR), duration of response (DoR), disease control rate (DCR), progression-free survival (PFS) assessed by investigators and overall survival (OS)

Analysis populations: intent-to-treat (ITT) (safety) and modified ITT (mITT) (completed >1 cycle)

Tumoral DKK1 mRNA expression: DKK1-high = H-score ≥35 assessed by a chromogenic *in situ* hybridization RNAscope assay and assigned an H-score (0-300) (Flagship Biosciences, Broomfield, CO; Advanced Cell Diagnostics,

Follow-up: end of treatment, 30 days after end of treatment, every 12 weeks thereafter Data cut-off: Sept 6, 2022

Second-line DKN-01 300 or 600 mg + Tislelizumab in **Advanced GEA Patients with High Tumoral DKK1 Expression**

Baseline Characteristics

- 52 pts enrolled between 27 Oct 2020 and 7 Jun 2022
- vCPS results (n=50): 13 (25%) pts <1, 23 (44%) pts 1-<10, 14 (27%) pts ≥10</p>
- Genomic profiling (n=49): 15 pts with Wnt activating mutations, no MSI-H, TMB <10 (87%)
- 4 pts had prior anti-PD-1/PD-L1 therapy

	Overall (N=52)	B1 (300 mg DKN-01) (N=24)	B2 (600 mg DKN-01 (N=28)
Age, median (min, max)	63.0 (29.0, 76.0)	61.0 (41.0, 68.0)	63.5 (29.0, 76.0)
Male, n (%)	41 (78.8%)	20 (83.3%)	21 (75.0%)
Female, n (%)	11 (21.2%)	4 (16.7%)	7 (25.0%)
Region			

Negion			
United States	22 (42.3%)	10 (41.7%)	12 (42.9%)
South Korea	30 (57.7%)	14 (58.3%)	16 (57.1%)
ECOG Performance Status, n (%)			
0	16 (30.8%)	8 (33.3%)	8 (28.6%)
1	36 (69.2%)	16 (66.7%)	20 (71.4%)
Primary Location			
Stomach (Gastric)	34 (65.4%)	15 (62.5%)	19 (67.9%)
Gastroesophageal Junction (GEJ)	18 (34.6%)	9 (37.5%)	9 (32.1%)
Prior Systemic Therapies			
Advanced/Metastatic, n (%)	51 (98.1%)	24 (100%)	27 (96.4%)
Chemotherapy			
Platinum	47 (90.4%)	21 (87.5%)	26 (92.9%)
Pyrimidine analogues	43 (82.7%)	19 (79.2%)	24 (85.7%)
Taxane	9 (17.3%)	5 (20.8%)	4 (14.3%)
Immunotherapy	4 (7.7%)	0	4 (14.3%)
Tumor PD-L1: vCPS (TAP) ^a , n (%)	50 (96.2%)	22 (91.7%)	28 (100.0%)
TAP < 1	13 (25.0%)	9 (37.5%)	4 (14.3%)
TAP 1-<10	23 (44.2%)	10 (41.7%)	13 (46.4%)
TAP ≥ 10	14 (26.9%)	3 (12.5%)	11 (39.3%)
unknown	2 (3.8%)	2 (8.3%)	0
Tumor Mutation Burden, ^b n (%)	47 (90.4%)	22 (91.7%)	25 (89.3%)
<10	41 (87.2%)	20 (90.9%)	21 (84.0%)
≥10	6 (12.8%)	2 (9.1%)	4 (16.0%)

^bTumor Mutation Burden and Microsatellite status was determined from plasma ctDNA using the FoundationOne Liquid CDx assay

3 (10.7%)

26 (92.9%)

25 (96.2%)

1 (3.8%)

8 (29.6%)

Disposition and Exposure

- Median duration of treatment: 1.46 months

Microsatellite status,^b n (%)

Missing (not tested) Her2 positive, n(%)

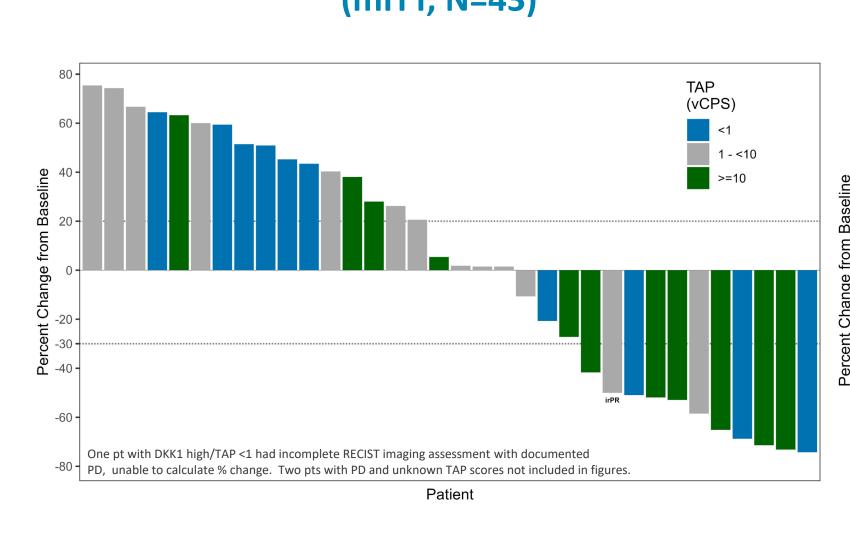
Microsatellite Stability (MSS)

	B1 (300 mg DKN-01) (N=24)	B2 (600 mg DKN-01) (N=28)
Number of cycles, median (min, max)	2.0 (1.0, 22.0)	2.0 (1.0, 15.0)
Duration on treatment (months), median (min, max)	1.43 (0.59, 15.93)	1.48 (0.33, 10.28)
Reasons for study drug discontinuation, n (%)	21 (87.5%)	21 (75.0%)
Patient request to withdraw	1 (4.2%)	3 (10.7%)
Objective disease progression	15 (62.5%)	13 (46.4%)
Adverse event	3 (12.5%)	4 (14.3%)
Investigator decision	1 (4.2%)	0
Other reasons	1 (4.2%)	1 (3.6%)
Reasons for study discontinuation, n (%)	18 (75.0%)	16 (57.1%)
Withdrawal of consent	6 (25.0%)	1 (3.6%)
Death	12 (50.0%)	14 (50.0%)
Lost to follow-up	0	1 (3.6%)
Duration on Study (months), median (min, max)	2.61 (0.79, 15.97)	4.58 (0.33, 10.28)

RESULTS

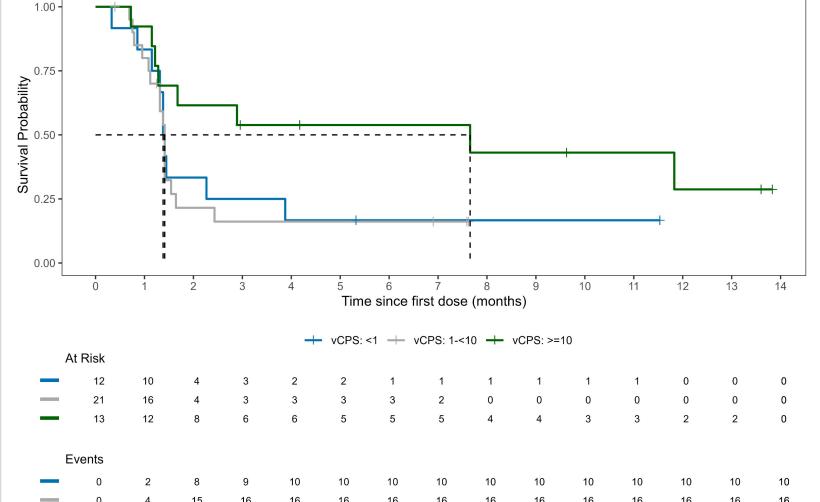
1-<10 (n=18

Unknown (n=2


TAP (vCPS): < 1

Second-line Therapy Efficacy Outcomes in the Anti-PD-1/PD-L1-naïve Population

Objective Response Rate (ORR) (mITT)


- ORR in response evaluable anti-PD-1/PD-L1-naïve mITT (n=43)
- ORR: 27% and DCR: 43%
- DKK1 high/TAP ≥ 10 pts: ORR 55%, DCR 73%
- DKK1 high/TAP <1 pts: ORR 27%, DCR 36%</p> DKK1 high/TAP 1-<10 pts: ORR: 8%, DCR 31%</p>
- Overall, 7 of 10 responders remain on therapy
- 4 of 6 responders (DKK1 high/TAP ≥ 10 pts) remain on therapy

Response by PD-L1 Expression (TAP/vCPS) (mITT, N=43)

Progression-free Survival (PFS) by PD-L1 Expression (TAP/vCPS) (ITT, N=46*)

• Median PFS: 1.4 mo overall (vCPS <1: 1.4 mo, 1-<10: 1.4 mos, ≥10: 7.7 mo)</p>

TAP: Tumor Area Positive; vCPS: Visually-Estimated Combined Positive Score; PD-L1: Programmed Death-Ligand 1

* 2 pts with unknown TAP scores not included

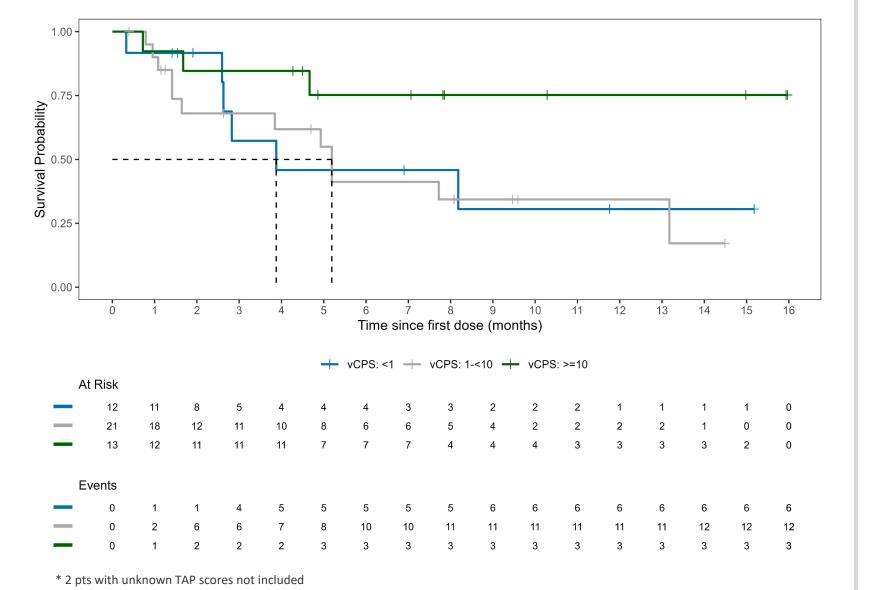
Overall Survival (OS) by PD-L1 Expression

(TAP/vCPS) (ITT, N=46*)

Median OS: 7.7 mo overall (vCPS <1: 3.9 mos, 1-<10: 5.2 mos, ≥10: not reached)</p>

Best Overall Response (mITT n=43), n (%)

Durability of Clinical Benefit by PD-L1


Expression (TAP/vCPS) (mITT, N=43)

TAP (vCPS): 1 - <10

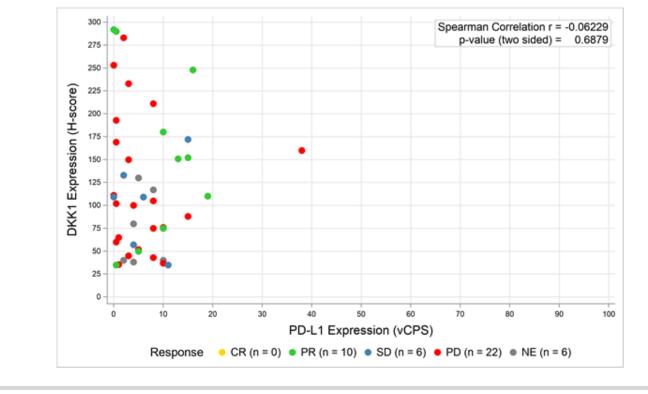
TAP (vCPS): >=10

TAP (vCPS)

-- >=10

Safety Outcomes

- Combination DKN-01 + tislelizumab was well tolerated with manageable toxicity
- Higher DKN-01 dose (600 mg) was not associated with higher frequency of adverse
- Most common regimen-related TEAEs: fatigue 7 (13.5%), nausea 5 (9.6%), pruritus 3 (5.8%), rash 3 (5.8%) and AST increased 3 (5.8%)
- Regimen-related serious TEAEs: 4 pts (7.7%): vomiting, fatigue, dehydration and immune-mediated hepatitis
- No Grade 5 treatment-related TEAEs
- No DKN-01-related TEAEs leading to study drug discontinuation or dose reduction


Summary of Adverse Events

	B1 (300 mg DKN-01) (N=24)	B2 (600 mg DKN-01) (N=28)	
	No. Patients (%)	No. Patients (%)	
Any adverse event	24 (100%)	24 (85.7%)	
Grade ≥3 events*	13 (54.2%)	15 (53.6%)	
Serious adverse events*	13 (54.2%)	13 (46.4%)	
Events leading to DKN-01 discontinuation+	3 (12.5%)	5 (17.9%)	
*Crade >2 DVN 01 related TEAEs in Ents (0.60/), AST increased (1)	ALT increased (1) blood alkalin	on phosphatasa increased (1)	

blood sodium increased (1), vomiting (1), fatigue (1) and dehydration (1); DKN-01-related serious TEAEs: 3 pts (vomiting, fatigue

1), dyspnoea (1), immune-mediated hepatitis (1), chronic kidney disease (1), fatigue (1) and hip fracture (1). TEAE: treatment-emergent adverse event

DKK1 and **PD-L1** Expression **Are Not Correlated**

CONCLUSIONS

- The combination of DKN-01 and tislelizumab represents a welltolerated, active chemotherapy-free combination in previously treated DKK1-high anti-PD-1/PD-L1-naïve GEA pts
- Encouraging durable activity was observed in 2L anti-PD-1/PD-L1naïve GEA pts with DKK1 high (H-score ≥35) and TAP high (≥10)
- ORR: 55% and DCR 73%
- PFS: 7.7 months
 - OS: not reached
- DKK1 and PD-L1 expression are independent biomarkers
- A Phase 2 randomized controlled study of tislelizumab and chemotherapy (CAPOX or mFOLFOX6) +/- DKN-01 in first-line GEA is underway (NCT04363801)

Presented at Society for Immunotherapy of Cancer 37Th Annual Meeting, November 8-12, 2022, Boston, MA

Acknowledgements: The authors thank the patients, families and physician investigators who participated in the DisTinGuish trial. Poster design and creation by Laurie LaRusso, MS, ELS, Chestnut Medical Communications Cancer Ther. 2021; 11:2240-2249. 4. Kagey MH, He X. Br J Pharmacology. 2017;174:4637-4650. 5. Xu J, et al. Clin Cancer Res. 2020;26(17):4542-4550

Disclosures: Dr. Klempner reports consulting/advisory fees from Merck, BMS, Eli Lilly, Natera Oncology, Pieris, Daiichi-Sankyo, Sanofi-Aventis, Foundation Medicine, and stock/equity in Turning Point Therapeutics