AACR VIRTUAL SPECIAL CONFERENCE ENDOMETRIAL CANCER: NEW BIOLOGY DRIVING RESEARCH AND TREATMENT

November 9-10, 2020

for Cancer Research FINDING CURES TOGETHER

Patients with recurrent epithelial endometrial cancers (EEC) and Wnt signaling alterations demonstrated greater clinical benefit when treated with DKN-01 monotherapy

Rebecca C. Arend, MD, MSPH University of Alabama at Birmingham rarend@uabmc.edu

The University of Alabama at Birmingham

Model of DKK1 Regulation of Signaling Pathways

DKK1 activates PI3K/AKT signaling

AACER American Association for Cancer Research^{*}

FINDING CURES TOGETHER®

Malladi et al., Cell, 2016; D'Amico et al., J Exp Med, 2016; Kimura et al., J Clin Invest, 2016; Krause et at., Cell Death Dis, 2014; Tao et al., Dig Liver Dis, 2013; Thudi et al., Prostate, 2011; Wang and Zhang, Clin Exp Metastasis, 2011

AACR VIRTUAL SPECIAL CONFERENCE: ENDOMETRIAL CANCER: NEW BIOLOGY DRIVING RESEARCH AND TREATMENT

ROCK

DKK1 indirectly activates

noncanonical signaling

DKK1 activation of

noncanonical signalling

WNTOO

B

LRP5/6

DKK1 inhibits canonical Wnt signaling

DKK1 Decreases Activated NK Cells Increases **MDSC** Accumulation

AACER American Association for Cancer Research^{*}

FINDING CURES TOGETHER®

A. Increased DKK1

- (1) Direct anti-tumor effects(2) Activates innate immune response(3) Acts as an anti-angiogenic agent
- Tumors with Wnt activating mutations are associated with higher levels of tumoral DKK1 expression.
- High tumoral DKK1 was associated with longer PFS and OS in patients with esophagogastric cancer treated with DKN-01 and pembrolizumab.

FINDING CURES TOGETHER

DKK1 High Expression Is Associated with Wnt Activating Mutations

- AMERICAN American Association for Cancer Research*
- Tumors with Wnt activating mutations have 14.4 times higher DKK1 expression

Phase 2 Study Design

AMERICAN AMERICAN ASSOCIATION for Cancer Research[®]

Basket study evaluating DKN-01 as monotherapy or in combination with paclitaxel in advanced gynecologic malignancies

Primary objective:

Objective response rate (ORR)

Secondary objectives:

Exploring genetic mutations in the Wnt signaling pathway and tumoral DKK1 expression as predictive biomarkers

Data as of 28 Sept 2020. EEC: epithelial endometrial cancer: EOC: epithelial ovarian cancer; MMMT: carcinosarcoma (malignant mixed Mullerian tumor)

- Recurrent EEC •
- Recurrent platinumresistant/refractory EOC
- Recurrent MMMT •
- \geq 1 prior therapy

DKN-01 +/-

Paclitaxel 80

ma/m²

Day 1

Biopsv

Screening

- Measurable disease
- 50% in each group with Wnt signaling alteration

28-day Cycle

NCT03395080

Wnt Genetic Groups

FINDING CURES TOGETHER®

Demographics

Demographics

Age (yrs), median

Stage at diagnosis, n

White, n

Ш

IV

Weeks since

EEC type, n Clear cell

Serous

Unknown

diagnosis, median

Endometrioid

Wnt

Altered

(n=21)

62.0

20

9

3

2

7

126.71

1

14

3

3

Wnt

Activating*

(n=9)

55.0

8

3

1

1

4

186.14

0

8

1

0

Non-Wnt

Altered

(n=8)

63.5

7

3

3

124.43

0

6

2

0

	Wnt Altered (n=21)	Wnt Activating* (n=9)	Non-Wnt Altered (n=8)
Tumor Grade, n			
G1	5	4	1
G2	9	3	2
G3	5	1	4
Unknown	2	1	1
Prior systemic therapies, median	2.0	3.0	4.0
\geq 3 prior systemic therapies, n	10	6	6
Prior Taxanes, n	20	9	8
Prior Platinum, n	20	9	8
Prior VEGF Inhibitors, n	4	2	3
Prior PARP Inhibitors, n	0	0	1
Prior Immunotherapy, n	5	3	0
Prior Hormonal Therapy, n	9	5	3

AACER American Association for Cancer Research^{*}

FINDING CURES TOGETHER®

*Wnt activating is a subset of Wnt altered

Tumor Characteristics

FINDING CURES TOGETHER®

	Wnt Altered (n=21)	Wnt Activating* (n=9)	Non-Wnt Altered (n=8)
Wnt genes, n#	21 (72.4)	9 (31.0)	8 (27.6)
ARID1A	11	—	—
MLL2	8	—	—
APC	7	2	—
CTNNB1	6	6	—
CREBBP	4	—	—
RNF43	3	2	—
SOX9	3	—	—
PAX5	3	—	—
PI3K/AKT, n#	19 (65.5)	9 (31.0)	6 (20.7)
PTEN	14	6	4
PIK3CA	9	5	4

	Wnt Altered (n=21)	Wnt Activating* (n=9)	Non-Wnt Altered (n=8)
RNAscope H score, median (tertile 1, tertile 2)#	15.0 (7.0, 35.0)	64.0 (7.0-110.0)	0.0 (0.0, 2.0)
Microsatellite status, n [#]			
MSS	13	6	5
MSI-H	2	0	0
MSI-L	1	0	0
Unknown	5	3	3
TMB, n#			
Low (0 to < 6)	11	5	4
Intermediate (≥ 6 to < 20)	3	1	1
High (≥ 20)	2	0	0
Unknown	5	3	3

*Wnt activating is a subset of Wnt altered

n (%) is calculated from total 29 patients in EEC subset

Clinical Response by Wnt Alteration Status

 Greater and more durable clinical activity in EEC pts with Wnt signaling alterations: 1 CR, 1 PR (ORR 10%) and 8 SD (ODCR 50%) vs 1 SD (ODCR 17%)

Tumoral DKK1 Expression and Clinical Activity

- AMERICAN American Association for Cancer Research*
- Higher tumoral expression of DKK1 is associated with greater clinical activity: DKK1-high: ORR 14.3%; ODCR: 57.1% vs DKK1-low: ORR: 0%; ODCR: 8.3%

Progression-free Survival by Wnt Mutation Status

- American Association for Cancer Research® FINDING CURES TOGETHER
- Longest PFS in pts with Wnt activating mutations compared to those without: Median 5.5 months (95% CI: 1.0, 11.1) vs 1.8 months (95% CI: 1.4, 2.3)

Wnt Activating Mutation Status

Overall Survival by Wnt Mutation Status

 Longest OS in pts with Wnt activating mutations compared to those without Median not reached (NR) vs 12.2 months (95% CI: 3.3, NE)

Tumoral DKK1 Expression and Survival

 Higher tumoral expression of DKK1 is associated with longer PFS than DKK1-low (3.0 vs 1.8 months), but not OS (7.0 vs 8.2 months)

Conclusions

- DKN-01 has single agent activity in endometrial cancer
- EEC has a high prevalence of Wnt signaling alterations (72%), including a subgroup with Wnt activating mutations (~30%)
- Wnt activating mutations are associated with higher tumoral DKK1 expression
- CTNNB1 mutations in EEC have been correlated with aggressive biology and shorter survival
- EEC pts with Wnt signaling alterations or elevated tumoral DKK1 treated with DKN-01 monotherapy experienced greater and more durable clinical benefit
- Subgroup of pts with Wnt activating mutations and treated with DKN-01 experienced longer PFS and OS when compared to those without similar mutations: PFS: 5.5 mos vs 1.8 mos and OS: NR vs 12.2 mos, respectively
- Further study with DKN-01 is warranted in EEC in pts with Wnt activating mutations and/or elevated tumoral DKK1

Thank you/Acknowledgements...

My co-authors

Cesar Castro - Massachusetts General Hospital, Boston, MA Ursula Matulonis – Dana-Farber Cancer Institute, Boston, MA Erika Hamilton – Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN Camille Gunderson – Univ. of Oklahoma Health Sciences Center, Oklahoma City, OK Kristopher LyBarger – Sarah Cannon-Research Institute at HCA Midwest, Kansas City, MO Howard M. Goodman – Florida Cancer Specialists, West Palm Beach, FL Linda R. Duska – Univ. of Virginia Health System, Charlottesville, VA Haider Mahdi – Cleveland Clinic, Cleveland, OH Adam C. El Naggar – West Cancer Center, Memphis, TN Michael Kagey – Leap Therapeutics, Inc., Cambridge, MA Lisa M. Barroilhet – Univ. of Wisconsin Hospitals and Clinics, Madison, WI William Bradley – Froedtert and Medical College of Wisconsin, Milwaukee, WI Jasgit Sachdev – HonorHealth Research Institute, Scottsdale, AZ Cynthia A. Sirard – Leap Therapeutics, Inc., Cambridge, MA Michael Birrer – Univ. of Arkansas, Little Rock, AR David M. O'Malley – Ohio State University, Columbus, OH

- My lab members:
 - Carly Scalise PhD
 - Jhalak Dholakia MD
 - Mckenzie Foxall
 - Jill Hyde RN
 - Alba Martinez MS
 - Ashwini Katre MS
- LEAP Therapeutics Team
- **AND** especially all the patients